Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncol Rep ; 47(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34779494

RESUMO

The incidence of cancer, which is the second leading cause of mortality globally, continues to increase, although continued efforts are being made to identify effective treatments with fewer side­effects. Previous studies have reported that chronic microinflammation, which occurs in diseases, including diabetes, along with weakened immune systems, may ultimately lead to cancer development. Chemotherapy, radiotherapy and surgery are the mainstream approaches to treatment; however, they all lead to immune system weakness, which in turn increases the metastatic spread. The aim of the present review was to provide evidence of a biological response modifier ß­glucan [ß­glucan vaccine adjuvant approach to treating cancer via immune enhancement (B­VACCIEN)] and its beneficial effects, including vaccine­adjuvant potential, balancing metabolic parameters (including blood glucose and lipid levels), increasing peripheral blood cell cytotoxicity against cancer and alleviating chemotherapy side effects in animal models. This suggests its value as a potential strategy to provide long­term prophylaxis in immunocompromised individuals or genetically prone to cancer.


Assuntos
Adjuvantes de Vacinas/administração & dosagem , Hospedeiro Imunocomprometido/imunologia , Neoplasias/imunologia , Neoplasias/prevenção & controle , beta-Glucanas/imunologia , Animais , Humanos
2.
Lancet ; 399(10319): 36-49, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883053

RESUMO

BACKGROUND: Given the importance of flexible use of different COVID-19 vaccines within the same schedule to facilitate rapid deployment, we studied mixed priming schedules incorporating an adenoviral-vectored vaccine (ChAdOx1 nCoV-19 [ChAd], AstraZeneca), two mRNA vaccines (BNT162b2 [BNT], Pfizer-BioNTech, and mRNA-1273 [m1273], Moderna) and a nanoparticle vaccine containing SARS-CoV-2 spike glycoprotein and Matrix-M adjuvant (NVX-CoV2373 [NVX], Novavax). METHODS: Com-COV2 is a single-blind, randomised, non-inferiority trial in which adults aged 50 years and older, previously immunised with a single dose of ChAd or BNT in the community, were randomly assigned (in random blocks of three and six) within these cohorts in a 1:1:1 ratio to receive a second dose intramuscularly (8-12 weeks after the first dose) with the homologous vaccine, m1273, or NVX. The primary endpoint was the geometric mean ratio (GMR) of serum SARS-CoV-2 anti-spike IgG concentrations measured by ELISA in heterologous versus homologous schedules at 28 days after the second dose, with a non-inferiority criterion of the GMR above 0·63 for the one-sided 98·75% CI. The primary analysis was on the per-protocol population, who were seronegative at baseline. Safety analyses were done for all participants who received a dose of study vaccine. The trial is registered with ISRCTN, number 27841311. FINDINGS: Between April 19 and May 14, 2021, 1072 participants were enrolled at a median of 9·4 weeks after receipt of a single dose of ChAd (n=540, 47% female) or BNT (n=532, 40% female). In ChAd-primed participants, geometric mean concentration (GMC) 28 days after a boost of SARS-CoV-2 anti-spike IgG in recipients of ChAd/m1273 (20 114 ELISA laboratory units [ELU]/mL [95% CI 18 160 to 22 279]) and ChAd/NVX (5597 ELU/mL [4756 to 6586]) was non-inferior to that of ChAd/ChAd recipients (1971 ELU/mL [1718 to 2262]) with a GMR of 10·2 (one-sided 98·75% CI 8·4 to ∞) for ChAd/m1273 and 2·8 (2·2 to ∞) for ChAd/NVX, compared with ChAd/ChAd. In BNT-primed participants, non-inferiority was shown for BNT/m1273 (GMC 22 978 ELU/mL [95% CI 20 597 to 25 636]) but not for BNT/NVX (8874 ELU/mL [7391 to 10 654]), compared with BNT/BNT (16 929 ELU/mL [15 025 to 19 075]) with a GMR of 1·3 (one-sided 98·75% CI 1·1 to ∞) for BNT/m1273 and 0·5 (0·4 to ∞) for BNT/NVX, compared with BNT/BNT; however, NVX still induced an 18-fold rise in GMC 28 days after vaccination. There were 15 serious adverse events, none considered related to immunisation. INTERPRETATION: Heterologous second dosing with m1273, but not NVX, increased transient systemic reactogenicity compared with homologous schedules. Multiple vaccines are appropriate to complete primary immunisation following priming with BNT or ChAd, facilitating rapid vaccine deployment globally and supporting recognition of such schedules for vaccine certification. FUNDING: UK Vaccine Task Force, Coalition for Epidemic Preparedness Innovations (CEPI), and National Institute for Health Research. NVX vaccine was supplied for use in the trial by Novavax.


Assuntos
Adjuvantes de Vacinas/administração & dosagem , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , Imunização Secundária/efeitos adversos , Imunização Secundária/métodos , Imunogenicidade da Vacina , Vacinas de mRNA/administração & dosagem , Vacina de mRNA-1273 contra 2019-nCoV/administração & dosagem , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Idoso , Vacina BNT162/administração & dosagem , Vacina BNT162/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , ChAdOx1 nCoV-19/administração & dosagem , ChAdOx1 nCoV-19/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Método Simples-Cego , Reino Unido , Vacinação/efeitos adversos , Vacinação/métodos , Vacinas de mRNA/imunologia
3.
Drug Deliv ; 28(1): 2594-2602, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34866536

RESUMO

It is urgently needed to develop novel adjuvants for improving the safety and efficacy of vaccines. Metal-organic frameworks (MOFs), with high surface area, play an important role in drug delivery. With perfect biocompatibility and green preparation process, the γ-cyclodextrin metal-organic framework (γ-CD-MOF) fabricated with cyclodextrin and potassium suitable for antigen delivery. In this study, we modified γ-CD-MOF with span-85 to fabricate the SP-γ-CD-MOF as animal vaccine adjuvants. The ovalbumin (OVA) as the model antigen was encapsulated into particles to investigate the immune response. SP-γ-CD-MOF displayed excellent biocompatibility in vitro and in vivo. After immunization, SP-γ-CD-MOF loaded with OVA could induce high antigen-specific IgG titers and cytokine secretion. Meanwhile, SP-γ-CD-MOF also significantly improved the proliferation of spleen cells and activated and matured the bone marrow dendritic cells (BMDCs). The study showed the potential of SP-γ-CD-MOF in vaccine adjuvants and provided a novel idea for the development of vaccine adjuvants.


Assuntos
Adjuvantes de Vacinas/farmacologia , Estruturas Metalorgânicas/química , Ovalbumina/farmacologia , gama-Ciclodextrinas/química , Adjuvantes de Vacinas/administração & dosagem , Animais , Animais não Endogâmicos , Células da Medula Óssea/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Citocinas/efeitos dos fármacos , Feminino , Hemólise/efeitos dos fármacos , Imunoglobulina G/efeitos dos fármacos , Camundongos , Ovalbumina/administração & dosagem , Células RAW 264.7 , Distribuição Aleatória , Baço/efeitos dos fármacos
4.
Front Immunol ; 12: 769088, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868027

RESUMO

Vaccine adjuvants from natural resources have been utilized for enhancing vaccine efficacy against infectious diseases. This study examined the potential use of catechins, polyphenolic materials derived from green tea, as adjuvants for subunit and inactivated vaccines. Previously, catechins have been documented to have irreversible virucidal function, with the possible applicability in the inactivated viral vaccine platform. In a mouse model, the coadministration of epigallocatechin-3-gallate (EGCG) with influenza hemagglutinin (HA) antigens induced high levels of neutralizing antibodies, comparable to that induced by alum, providing complete protection against the lethal challenge. Adjuvant effects were observed for all types of HA antigens, including recombinant full-length HA and HA1 globular domain, and egg-derived inactivated split influenza vaccines. The combination of alum and EGCG further increased neutralizing (NT) antibody titers with the corresponding hemagglutination inhibition (HI) titers, demonstrating a dose-sparing effect. Remarkably, EGCG induced immunoglobulin isotype switching from IgG1 to IgG2a (approximately >64-700 fold increase), exerting a more balanced TH1/TH2 response compared to alum. The upregulation of IgG2a correlated with significant enhancement of antibody-dependent cellular cytotoxicity (ADCC) function (approximately 14 fold increase), providing a potent effector-mediated protection in addition to NT and HI. As the first report on a novel class of vaccine adjuvants with built-in virucidal activities, the results of this study will help improve the efficacy and safety of vaccines for pandemic preparedness.


Assuntos
Catequina/análogos & derivados , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes de Vacinas/administração & dosagem , Compostos de Alúmen/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Catequina/administração & dosagem , Catequina/imunologia , Cães , Sinergismo Farmacológico , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/fisiologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia
5.
Sci Rep ; 11(1): 18641, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545126

RESUMO

Human respiratory syncytial virus (hRSV) infection is a major pediatric health concern worldwide. Despite more than half a century of efforts, there is still no commercially available vaccine. In this study, we constructed and purified the recombinant protein CTA1-DD-RBF composed of a CTA1-DD mucosal adjuvant and prefusion F protein (RBF) using Escherichia coli BL21 cells. We studied the immunogenicity of CTA1-DD-RBF in mice. Intranasal immunization with CTA1-DD-RBF stimulated hRSV F-specific IgG1, IgG2a, sIgA, and neutralizing antibodies as well as T cell immunity without inducing lung immunopathology upon hRSV challenge. Moreover, the protective immunity of CTA1-DD-RBF was superior to that of the RBF protein, as confirmed by the assessment of serum-neutralizing activity and viral clearance after challenge. Compared to formalin-inactivated hRSV (FI-RSV), intranasal immunization with CTA1-DD-RBF induced a Th1 immune response. In summary, intranasal immunization with CTA1-DD-RBF is safe and effective in mice. Therefore, CTA1-DD-RBF represents a potential mucosal vaccine candidate for the prevention of human infection with hRSV.


Assuntos
Toxina da Cólera/administração & dosagem , Toxina da Cólera/imunologia , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/administração & dosagem , Proteínas Virais de Fusão/imunologia , Adjuvantes de Vacinas/administração & dosagem , Administração Intranasal , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Toxina da Cólera/genética , Feminino , Humanos , Imunidade nas Mucosas , Imunização , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/genética , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Células Th1/imunologia , Proteínas Virais de Fusão/genética , Replicação Viral
6.
Immunobiology ; 226(4): 152108, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34247017

RESUMO

In Algeria, Androctonus australis hector scorpion envenomation remains a major problem of public health because of non-efficient therapy. The development of safe vaccine against scorpion venom could be one key strategy for the envenomation prevention. The irradiation of venom by γ-rays develops suitable immunogens which produced effective antivenom and safe vaccine. In this study, we investigated the ability of the irradiated toxic fraction (γ-FtoxG50) to induce long-term memory humoral response in immunized animals (mice and rabbits), by involving the long-lived plasma cells to prevent efficiently the lethality of scorpion envenomation. For this purpose, an appropriate immunization schedule was established in mice and rabbits using three (3) similar doses of γ-FtoxG50 associated with Alum adjuvant. Obtained results indicate that the long-term immunogenicity of γ-FtoxG50 is able to induce the long-term memory humoral response with a high level of specific antibodies. The long-term persistence of antibody levels could depend on bone marrow memory plasma cells. These cells produce continuously antibodies without antigen stimulus. Furthermore, an enhanced memory response was obtained post-repeated envenomation with toxic native venom that leads to improved protection of animals. Together, pre-existing protective antibodies and the activation of memory B-cells could induce a rapid neutralization of scorpion toxins and long-term protection against scorpion envenomation.


Assuntos
Antígenos/administração & dosagem , Imunoglobulina G/imunologia , Neurotoxinas/administração & dosagem , Plasmócitos/imunologia , Venenos de Escorpião/administração & dosagem , Vacinas/administração & dosagem , Adjuvantes de Vacinas/administração & dosagem , Compostos de Alúmen/administração & dosagem , Animais , Antígenos/efeitos da radiação , Medula Óssea/imunologia , Feminino , Raios gama , Memória Imunológica , Camundongos , Neurotoxinas/efeitos da radiação , Coelhos , Venenos de Escorpião/efeitos da radiação , Baço/imunologia
7.
Adv Drug Deliv Rev ; 175: 113803, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34058283

RESUMO

Imidazoquinoline derivatives (IMDs) and related compounds function as synthetic agonists of Toll-like receptors 7 and 8 (TLR7/8) and one is FDA approved for topical antiviral and skin cancer treatments. Nevertheless, these innate immune system-activating drugs have potentially much broader therapeutic utility; they have been pursued as antitumor immunomodulatory agents and more recently as candidate vaccine adjuvants for cancer and infectious disease. The broad expression profiles of TLR7/8, poor pharmacokinetic properties of IMDs, and toxicities associated with systemic administration, however, are formidable barriers to successful clinical translation. Herein, we review IMD formulations that have advanced to the clinic and discuss issues related to biodistribution and toxicity that have hampered the further development of these compounds. Recent strategies aimed at enhancing safety and efficacy, particularly through the use of bioconjugates and nanoparticle formulations that alter pharmacokinetics, biodistribution, and cellular targeting, are described. Finally, key aspects of the biology of TLR7 signaling, such as TLR7 tolerance, that may need to be considered in the development of new IMD therapeutics are discussed.


Assuntos
Adjuvantes de Vacinas/administração & dosagem , Antivirais/administração & dosagem , Sistemas de Liberação de Medicamentos , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Adjuvantes de Vacinas/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Antivirais/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Humanos , Agentes de Imunomodulação/administração & dosagem , Agentes de Imunomodulação/uso terapêutico
8.
Clin Cancer Res ; 27(5): 1278-1286, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33277370

RESUMO

PURPOSE: Immunotherapy is currently ineffective for nearly all pancreatic ductal adenocarcinomas (PDAC), largely due to its tumor microenvironment (TME) that lacks antigen-experienced T effector cells (Teff). Vaccine-based immunotherapies are known to activate antigen-specific Teffs in the peripheral blood. To evaluate the effect of vaccine therapy on the PDAC TME, we designed a neoadjuvant and adjuvant clinical trial of an irradiated, GM-CSF-secreting, allogeneic PDAC vaccine (GVAX). PATIENTS AND METHODS: Eighty-seven eligible patients with resectable PDAC were randomly assigned (1:1:1) to receive GVAX alone or in combination with two forms of low-dose cyclophosphamide. Resected tumors following neoadjuvant immunotherapy were assessed for the formation of tertiary lymphoid aggregates (TLA) in response to treatment. The clinical endpoints are disease-free survival (DFS) and overall survival (OS). RESULTS: The neoadjuvant treatment with GVAX either alone or with two forms of low-dose cyclophosphamide is safe and feasible without adversely increasing the surgical complication rate. Patients in Arm A who received neoadjuvant and adjuvant GVAX alone had a trend toward longer median OS (35.0 months) than that (24.8 months) in the historical controls who received adjuvant GVAX alone. However, Arm C, who received low-dose oral cyclophosphamide in addition to GVAX, had a significantly shorter DFS than Arm A. When comparing patients with OS > 24 months to those with OS < 15 months, longer OS was found to be associated with higher density of intratumoral TLA. CONCLUSIONS: It is safe and feasible to use a neoadjuvant immunotherapy approach for PDACs to evaluate early biologic responses. In-depth analysis of TLAs is warranted in future neoadjuvant immunotherapy clinical trials.


Assuntos
Adjuvantes de Vacinas/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Carcinoma Ductal Pancreático/mortalidade , Ciclofosfamida/administração & dosagem , Linfócitos/patologia , Terapia Neoadjuvante/mortalidade , Neoplasias Pancreáticas/mortalidade , Idoso , Antineoplásicos Alquilantes/administração & dosagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Imunoterapia , Linfócitos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Prognóstico , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA